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Abstract

Double diffusive convection in a fluid-saturated porous layer heated from below and cooled from above is studied when the fluid and solid
phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Darcy model with time derivative term is
employed as momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy
equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. It is found that small inter-phase
heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal and solute
diffusion that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh
number, porosity modified conductivity ratio, Lewis number, ratio of diffusivities and Vadasz number on the stability of the system is investigated.
The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form
of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The problem of double diffusive convection in porous media
has attracted considerable interest during the last few decades
because of its wide range of applications, from the solidification
of binary mixtures to the migration of solutes in water-saturated
soils. The other examples include geophysical systems, electro-
chemistry, the migration of moisture through air contained in
fibrous insulation.

Early studies on the phenomena of double diffusive convec-
tion in porous media are mainly concerned with problem of
convective instability in a horizontal layer heated and salted
from below. A comprehensive review of the literature con-
cerning double diffusive natural convection in a fluid-saturated
porous medium may be found in the book by Nield and Be-
jan [1]. The study of double diffusive convection in porous
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medium is first under taken by Nield [2] on the basis of linear
stability theory for various thermal and solutal boundary condi-
tions. The onset of double diffusive convection in a horizontal
porous layer has been investigated by Rudraiah et al. [3] us-
ing nonlinear perturbation theory. The linear stability analysis
of the thermosolutal convection is carried out by Poulikakos [4]
using the Darcy–Brinkman model. The double diffusive con-
vection in porous media in the presence of cross-diffusion ef-
fects is analyzed by Rudraiah and Malashetty [5]. The problem
of double diffusive convection in a fluid saturated porous layer
was later on investigated by many authors (Taunton et al. [6],
Taslim and Narusawa [7], Trevisan and Bejan [8], Murray and
Chen [9]).

Straughan and Hutter [10] have investigated the double dif-
fusive convection with Soret effect in a porous layer using
Darcy–Brinkman model and derived a priori bounds. An ana-
lytical and numerical study of double diffusive parallel flow in
a horizontal sparsely packed porous layer under the influence
of constant heat and mass flux is performed using a Brinkman
model by Amahmid et al. [11]. Mamou and Vasseur [12] have
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Nomenclature

a horizontal wavenumber
c specific heat
d depth of the porous layer
D solute diffusivity
Da Darcy number K/d2

g gravitational acceleration
h inter-phase heat transfer coefficient
H non-dimensional inter-phase heat transfer

coefficient, hd2/εkf

k unit vector in the vertical direction,
k thermal conductivity
K permeability of the porous layer
l,m wavenumbers in x-, y-directions
Le Lewis number, κf /D

Nu Nusselt number,
Pr Prandtl number, ν/κf

p pressure
q velocity vector, (u,v,w)
RaT thermal Rayleigh number, βT g�T dK/ενκf

RaS solute Rayleigh number, βSg�SdK/ενκf

S solute concentration
Sh Sherwood number
T temperature,
t time
Va Vadasz number, ε Pr

Da
x, y, z space coordinates

Greek symbols

α the ratio of diffusivities,
(ρ0c)skf /(ρ0c)f ks = κf /κs

βS solute expansion coefficient
βT thermal expansion coefficient
γ the porosity modified conductivity ratio,

εkf /(1 − ε)ks

δ2 π2 + a2

ε porosity
κ thermal diffusivity, k/(ρ0c)

μ dynamic viscosity
ν kinematic viscosity, μ/ρ0
ρ fluid density
ω frequency
ψ stream function

Subscripts/superscripts

b basic state
c critical
f fluid phase
F finite amplitude
l lower wall
Osc oscillatory
s solid phase
St stationary
u upper wall
0 reference
* non-dimensional
′ perturbed quantity
studied the double diffusive instability in a horizontal rectan-
gular porous enclosure subject to vertical temperature and con-
centration gradients Double diffusive convection in a vertical
enclosure filled with anisotropic porous media has been stud-
ied numerically by Bennacer et al. [13]. Mamou et al. [14]
performed both analytical and numerical stability analyses of
double diffusive convection in a confined horizontal rectan-
gular enclosure based on Galerkin and finite element meth-
ods respectively. Using the Darcy–Brinkman model Bennacer
et al. [15] have studied a thermosolutal convection in a two
dimensional rectangular cavity filled with saturated homoge-
neous porous medium that is thermally anisotropic. They have
presented an analytical and numerical study of combined heat
and mass transfer driven by buoyancy, due to temperature and
concentration variation. Bahloul et al. [16] have carried out an
analytical and numerical study of the double diffusive convec-
tion in a shallow horizontal porous layer under the influence of
Soret effect.

Recently, Hill [17] performed linear and nonlinear stabil-
ity analyses of double diffusive convection in a fluid saturated
porous layer with a concentration based internal heat source us-
ing Darcy’s law. Double diffusive natural convection within a
multilayer anisotropic porous medium is studied numerically
and analytically by Bennacer et al. [18]. Mansour et al. [19]
have investigated the multiplicity of solutions induced by ther-
mosolutal convection in a square porous cavity heated from
below and subjected to horizontal concentration gradient in the
presence of Soret effect.

In modeling a fluid-saturated porous medium all the above
investigations on double diffusive convection have assumed a
state of local thermal equilibrium (LTE) between the fluid and
the solid phase at any point in the medium. This is a common
practice for most of the studies where the temperature gradient
at any location between the two phases is assumed to be neg-
ligible. For many practical applications, involving high-speed
flows or large temperature differences between the fluid and
solid phases, the assumption of local thermal equilibrium is in-
adequate and it is important to take account of the thermal non-
equilibrium effects. Due to applications of porous media theory
in drying, freezing of foods and other mundane materials and
applications in everyday technology such as microwave heat-
ing, rapid heat transfer from computer chips via use of porous
metal foams and their use in heat pipes, it is believed that local
thermal non-equilibrium (LTNE) theory will play a major role
in future developments.
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Recently, attention has been given to the LTNE model in
the study of convection heat transfer in porous media. Much
of this work has been reviewed in recent books by Ingham
and Pop [20,21] and Nield and Bejan [1]. Criteria for heat
and mass transfer models in metal hydride packed beds has
been investigated by Kuznetsov and Vafai [22] and effects of
non-equilibrium were suggested to be more significant at high
Reynolds number and for high porosity. Kuznetsov [23] studied
a perturbation solution for a thermal non-equilibrium fluid flow
through a three-dimensional sensible storage packed bed. Vafai
and Amiri [24] gave detailed information about the work on
thermal non-equilibrium effects of fluid flow through a porous
packed bed. The review of Kuznetsov [25] gives detailed in-
formation about the most but very latest works on thermal
non-equilibrium effects on internal forced convection flows. An
excellent review of research on local thermal non-equilibrium
phenomena in porous medium convection, primarily free and
forced convection boundary layers and free convection within
cavities, is given by Rees and Pop [26].

Rees and co-workers (Rees and Pop [27,28], Banu and
Rees [29]) in a series of studies have investigated thermal non-
equilibrium (LTNE) effect on free convective flows in a porous
medium. Free convection in a square porous cavity using a ther-
mal non-equilibrium model is studied by Baytas and Pop [30]
while Baytas [31] investigated the thermal non-equilibrium nat-
ural convection in a square enclosure filled with a heat generat-
ing solid phase and with the Brinkman–Forchheimer extended
Darcy law for the momentum equation. A review of thermal
non-equilibrium free convection in a cavity filled with non-
Darcy porous medium is also given by Baytas [32]. The prob-
lem of two-dimensional steady mixed convection in a vertical
porous layer using thermal non-equilibrium model is investi-
gated numerically by Saeid [33]. The effect of thermal non-
equilibrium on the onset of convection in a porous layer using
the Lapwood–Brinkman model and also including anisotropy
in permeability and thermal diffusivity in a densely packed
porous layer have been investigated by Malashetty et al. [34,
35]. More recently, Straughan [36] has considered a problem
of thermal convection in a fluid-saturated porous layer us-
ing a global nonlinear stability analysis with a thermal non-
equilibrium model.

While the double diffusive convection in porous medium is
extensively studied for the case of local thermal equilibrium
model, there seems to have been no work, to the best knowl-
edge of the authors, on study of double diffusive convection
in a fluid-saturated porous layer with thermal non-equilibrium
model. In this paper, we intend to perform the linear and a weak
nonlinear stability analysis of the double diffusive convection
in a fluid-saturated porous layer with the assumption that the
fluid and solid phases are not in local thermal equilibrium. Our
objective in this paper is to study how the onset criterion for
steady, oscillatory and finite amplitude convection and also the
heat and mass transfer are affected by the local thermal non-
equilibrium model.
2. Mathematical formulation

We consider an infinite horizontal fluid-saturated porous
layer confined between the planes z = 0 and z = d , with the
vertically downward gravity force g acting on it. A uniform
adverse temperature gradient �T = (Tl − Tu) and a stabiliz-
ing concentration gradient �S = (Sl − Su) where Tl > Tu and
Sl > Su are maintained between the lower and upper surfaces.
A Cartesian frame of reference is chosen with the origin in the
lower boundary and the z-axis vertically upwards. The Darcy
law with time derivative term is used to model the momentum
equation

1

ε

∂q
∂t

+ ν

K
q = − 1

ρ0
∇p + ρf

ρ0
g (2.1)

where ε and K denote porosity and permeability respectively,
ρ and ν are density and kinematic viscosity respectively. The
justification for the inclusion of time derivative term in the mo-
mentum equation is discussed at the end of this section.

In modeling energy equation for a fluid-saturated porous sys-
tem, two kinds of theoretical approaches have been used. In the
first model, the fluid and solid structures are assumed to be in
local thermal equilibrium. This assumption is satisfactory for
small-pore media such as geothermal reservoirs and fibrous in-
sulations and small temperature differences between the phases.
In the second kind of approach, the fluid and solid structures
are assumed to be in thermal non-equilibrium. For many ap-
plications involving high-speed flows or large temperature dif-
ference between the fluid and solid phases, it is important to
take account of the thermal non-equilibrium effects. If the tem-
peratures difference between phases is a very important safety
parameter (e.g., fixed bed nuclear propulsion systems and nu-
clear reactor modeling), the thermal non-equilibrium model in
the porous media is an indispensable model.

The local thermal non-equilibrium, which account for the
transfer of heat between the fluid and solid phases is consid-
ered. A two-field model that represents the fluid and solid phase
temperature fields separately, is employed for the energy equa-
tion [1]

ε(ρ0c)f
∂Tf

∂t
+ (ρ0c)f (q · ∇)Tf = εkf ∇2Tf + h(Ts − Tf )

(2.2)

(1 − ε)(ρ0c)s
∂Ts

∂t
= (1 − ε)ks∇2Ts − h(Ts − Tf ) (2.3)

where c is the specific heat, k, the thermal conductivity and
h being the inter-phase heat transfer coefficient. In two-field
model the energy equations are coupled by means of the terms,
which accounts for the heat lost to or gained from the other
phase. The inter-phase heat transfer coefficient h depends on
the nature of the porous matrix and the saturating fluid and
the value of this coefficient has been the subject of intense ex-
perimental interest. Large values of h correspond to a rapid
transfer of heat between the phases (LTE) and small values of
h gives rise to relatively strong thermal non-equilibrium ef-
fects. In Eqs. (2.2)–(2.3) Tf and Ts are intrinsic average of
the temperature fields and this allows one to set Tf = Ts = Tw
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whenever the boundary of the porous medium is maintained at
the temperature Tw .

The equation of continuity, solute concentration and state are

∇ · q = 0 (2.4)
∂S

∂t
+ 1

ε
(q · ∇)S = D∇2S (2.5)

ρ = ρ0
[
1 − βT (Tf − Tl) + βS(S − Sl)

]
(2.6)

where βT , βS and D are the thermal and solute expansion co-
efficient and solute diffusivity respectively.

The basic state is assumed to be quiescent and is given by

qb = 0, Tf = Tf b(z), Ts = Tsb(z)

S = Sb(z), h = 0 (2.7)

The basic state temperatures and concentration satisfy the equa-
tions

d2Tf b

dz2
= 0,

d2Tsb

dz2
= 0,

d2Sb

dz2
= 0 (2.8)

with boundary conditions

Tf b = Tsb = Tl and Sb = Sl at z = 0 (2.9)

Tf b = Tsb = Tu and Sb = Su at z = d (2.10)

so that the conduction state solutions are given by

Tf b = Tsb = −�T

d
z + Tl (2.11)

Sb = −�S

d
z + Sl (2.12)

We now superimpose the infinitesimal perturbations on the ba-
sic state and study the stability of the system.

Let the basic state be perturbed by an infinitesimal thermal
perturbation, so that

q = q′, Tf = Tf b + T ′
f , Ts = Tsb + T ′

s

S = Sb + S′, p = pb + p′, ρ = ρb + ρ′ (2.13)

where the prime indicates that the quantities are infinitesimal
perturbations. Substituting Eq. (2.13) into Eqs. (2.1)–(2.6) and
using the basic state solutions, we obtain the equations govern-
ing the perturbations in the form,

1

ε

∂q′

∂t
+ ν

K
q′ = − 1

ρ0
∇p′ + (βSS′ − βT T ′

f )k (2.14)

ε(ρ0c)f
∂T ′

f

∂t
+ (ρ0c)f (q′ · ∇)T ′

f + (ρ0c)f w′
(

dTf b

dz

)

= εkf ∇2T ′
f + h(T ′

s − T ′
f ) (2.15)

(1 − ε)(ρ0c)s
∂T ′

s

∂t
= (1 − ε)ks∇2T ′

s − h(T ′
s − T ′

f ) (2.16)

∂S′

∂t
+ 1

ε
(q′ · ∇)S′ + 1

ε
w′

(
dSb

dz

)
= D∇2S′ (2.17)

We consider only two-dimensional perturbations by ignor-
ing the variations in y-direction. By operating curl twice on
Eq. (2.14) we eliminate p′ from it, and then render the result-
ing equation and Eqs. (2.15)–(2.17) dimensionless using the
following transformations
(x, y, z) = (x∗, y∗, z∗)d, t = (ρ0c)f d2

kf

t∗

(u′, v′,w′) = εkf

(ρ0c)f d
(u∗, v∗,w∗)

T ′
f = (�T )T ∗

f , T ′
s = (�T )T ∗

s , S′ = (�S)S∗ (2.18)

to obtain non-dimensional equations as (on dropping the aster-
isks for simplicity),(

1

Va

∂

∂t
+ 1

)
∇2ψ + RaT

∂Tf

∂x
− RaS

∂S

∂x
= 0 (2.19)

(
∂

∂t
− ∇2

)
Tf − ∂(ψ,Tf )

∂(x, z)
+ ∂ψ

∂x
= H(Ts − Tf ) (2.20)

(
α

∂

∂t
− ∇2

)
Ts = γH(Tf − Ts) (2.21)

(
∂

∂t
− 1

Le
∇2

)
S − ∂(ψ,S)

∂(x, z)
+ ∂ψ

∂x
= 0 (2.22)

where

Va = ε
Pr

Da
, the Vadasz number,

RaT = βT g�T dK/ενκf , the thermal Rayleigh number,

RaS = βSg�SdK/ενκf , the solute Rayleigh number,

H = hd2/εkf , the inter-phase heat transfer coefficient,

α = κf /κs, the ratio of diffusivities,

γ = εkf /(1 − ε)ks, the porosity modified conductivity ratio,

Le = κf /D, the Lewis number

with κf = kf /(ρ0c)f being the thermal diffusivity and ψ be-
ing the stream function defined such that u = ∂ψ/∂z, w =
−∂ψ/∂x. It should be noted that the dimensionless group H is
akin to the Nield number. Vadasz [37] in his work, defined the
Nield number as Ni = (1 − ε)ks/(hd2). Therefore, the dimen-
sionless group H used in the present paper may be defined as
H = 1/Nif where Nif is the fluid related Nield number given
by Nif = εkf /(hd2). It is worth mentioning that the Rayleigh
number RaT defined above is based on the properties of the
fluid while

RaTLTE =
(

γ

1 + γ

)
RaT = ρf gβT (�T )Kd

[εkf + (1 − ε)ks] (2.23)

is the Rayleigh number based on the mean properties of the
porous medium and it is this latter definition, which is used
in the thermal equilibrium model. Vadasz [38] was the first to
show the substantial impact of the new dimensionless group
Va = ε Pr

Da , which includes the Prandtl number, the Darcy num-
ber and the porosity of the porous medium, on convection in
porous media and was the first to identify the conditions for
such impact. Straughan [39] named this dimensionless group as
Vadasz number. Vadasz in a series of comprehensive works [38,
40–42] reported that the typical values of Vadasz number (Va)

in traditional porous media applications are quite big, a fact
which provides the justification for neglecting the time deriv-
ative term in Eq. (2.19). This is then the classical theory of
Darcy. Nield and Bejan [1] argue for this scenario, which is cer-
tainly true in many geophysical and engineering applications.
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However, Vadasz [38] argues that in circumstances linked to
modern porous media applications the value of Va can become
of unit order of magnitude or even smaller, in which case the
time derivative should be retained. Straughan [39] has also sup-
ported this argument. Accordingly, following Vadasz [38] line
of argument, in the present paper, we keep the time derivative
terms in the Darcy equation and we will find how Vadasz num-
ber Va influences the overstable motions. Including the time
derivative term in Eq. (2.19) is equivalent to maintaining the
highest derivative in an equation to satisfy all boundary (initial)
conditions. Further it is important to note that it is only through
this combined dimensionless group that the Prandtl number af-
fects the flow in the porous media. One can refer Vadasz [38]
for a full discussion on the numerical values that the Prandtl
number can assume in a typical porous medium.

Since the fluid and solid phases are not in thermal equilib-
rium, the use of appropriate thermal boundary conditions may
pose a difficulty. However, the assumption made earlier that the
solid and fluid phases share the same temperature as that of
the boundary temperatures helps in overcoming this difficulty.
Accordingly, Eqs. (2.19)–(2.22) are solved for impermeable
isothermal isosolutal boundaries. Hence the boundary condi-
tions for the perturbation variables are given by

ψ = Tf = Ts = S = 0 at z = 0,1 (2.24)

3. Linear stability analysis

In this section we predict the thresholds of both marginal
and oscillatory convections using linear theory. The eigenvalue
problem defined by Eqs. (2.19)–(2.22) subject to the boundary
conditions (2.24) is solved using the time-dependent periodic
disturbances in a horizontal plane, upon assuming that ampli-
tudes are small enough and can be expressed as⎛
⎜⎜⎝

ψ

Tf

Ts

S

⎞
⎟⎟⎠ = eiωt

⎛
⎜⎜⎝

Ψ sin(ax)

Θ cos(ax)

Φ cos(ax)

Σ cos(ax)

⎞
⎟⎟⎠ sin(πz) (3.1)

where a is a horizontal wavenumbers and ω is the growth rate.
Infinitesimal perturbations of the rest state may either damp or
grow depending on the value of the parameter ω. Substituting
Eqs. (3.1) into Eqs. (2.19)–(2.22) we obtain a matrix equation⎛
⎜⎝

δ2(ω/Va + 1) −a RaT 0 a RaS

−a ω + δ2 + H −H 0
0 −γH αω + δ2 + γH 0

−a 0 0 ω + δ2/Le

⎞
⎟⎠

×

⎛
⎜⎜⎝

Ψ

Θ

Φ

Σ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ (3.2)

where

δ2 = π2 + a2 (3.3)

is the total wavenumber.
For the above matrix equation (3.2) to have the nontrivial

solution, we require
RaT = δ2

a2

{[
δ2 + H(1 + γ )

]
+ ω

[
αω + δ2(1 + α) + H(α + γ )

]}
/(αω + δ2 + γH)

×
[
δ2

(
ω

Va
+ 1

)
+ a2 RaS

ω + δ2/Le

]
(3.4)

The growth rate ω is in general a complex quantity such that
ω = ωr + iωi . The system with ωr < 0 is always stable, while
for ωr > 0 it will become unstable. For neutral stability state
ωr = 0. Therefore, we now set ω = iωi in Eq. (3.4) and clear
the complex quantities from the denominator, to obtain

RaT = Δ1 + iωiΔ2 (3.5)

where

Δ1 = A0(A1 + A2) (3.6)

Δ2 = A0(A3 + A4) (3.7)

with

A0 = a−2[Va(δ4 + Le2 ω2
i )

{
(δ2 + Hγ )2 + α2ω2

i

}]−1 (3.8)

A1 = δ2(δ4 + Le2 ω2
i )

[
δ2 Va(δ2 + γH)

{
δ2 + H(γ + 1)

}
− ω2

i

{
δ4 + (2γH − α2 Va)δ2

+ γH 2(α + γ ) − α2 VaH
}]

(3.9)

A2 = a2 Le RaS Va
[
α2 Leω4

i + {
δ4(α2 + Le)

+ δ2H(α2 + 2γ Le) + γH 2 Le(α + γ )
}
ω2

i

+ δ4(δ2 + γH)
{
δ2 + H(γ + 1)

}]
(3.10)

A3 = δ2(δ4 + Le2 ω2
i )

[
γH 2 Va(α + γ ) + α2ω2

i (H + Va)

+ δ2{α2ω2
i + 2γH Va + γH 2(γ + 1)

}
+ δ4{Va + H(2γ + 1)

} + δ6] (3.11)

A4 = −a2 Le RaS Va
[
α2{δ2(Le − 1) + H Le

}
ω2

i + δ6(Le − 1)

+ δ4H
{
Le + 2γ (Le − 1)

}
+ δ2γH 2{γ (Le − 1) + Le − α

}]
(3.12)

Since RaT is a physical quantity, it must be real. Hence, from
Eq. (3.5) it follows that either ωi = 0 (steady onset) or Δ2 = 0
(ωi �= 0, oscillatory onset).

3.1. Stationary convection

The direct bifurcation (steady onset) corresponds to ωi = 0
and the steady convection occurs at

RaSt
T = [δ2 + H(γ + 1)](δ4 + a2 Le RaS)

a2(δ2 + γH)
(3.13)

It is worth mentioning that the stationary Rayleigh number is
independent of the diffusivity ratio of the fluid and solid phases
and also the Vadasz number. When H → ∞, Eq. (3.13) gives

RaSt
T =

(
1 + γ

γ

)(
(π2 + a2)2

a2
+ Le RaS

)

Using the definition (2.23) the above equation takes the form

RaSt
T LTE = RaSt

T

(
γ

)
= (π2 + a2)2

2
+ Le RaS (3.14)
γ + 1 a
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which is a classical result obtained by Nield [2] for the prob-
lem of double diffusive convection in a porous layer with LTE
model. For RaS = 0, Eq. (3.14) gives

RaSt
T LTE = (π2 + a2)2

a2
(3.15)

the classical result of Horton and Rogers [43] and Lapwood
[44] for single component convection in a porous layer.

If we set RaS = 0 in Eq. (3.13) we obtain

RaSt
T = (π2 + a2)2

a2

(
(π2 + a2) + H(1 + γ )

(π2 + a2 + γH)

)
(3.16)

This is identical with the result of Banu and Rees [29] for the
single component convection in a porous layer with the local
thermal non-equilibrium model.

The stationary Rayleigh number RaSt
T given by Eq. (3.13)

attains the critical value for the wavenumber ac = √
x, which

satisfies the equation

x4 + 2(π2 + γH)x3 + H
[
γ (1 + γ )H + π2(2γ − 1)

− Le RaS

]
x2 − 2π4[π2 + H(1 + γ )

]
x

− π4(π2 + γH)
[
π2 + H(1 + γ )

] = 0 (3.17)

Now we discuss the asymptotic analysis for both small and
large values of H . The small H physically represents that
there is almost no transfer of heat between the fluid and solid
phase. The solid phase ceases to affect the thermal field of the
fluid, which is free to act independently. On the other hand
for large H , the solid phase and the fluid phase have nearly
identical temperatures and may be treated as a single phase.
The respective mathematical problems are identical except for
a rescaling of RaSt

T . The expression for the Rayleigh number
and the corresponding wavenumber for small as well as large
values of the interphase heat transfer coefficient H are obtained
and the same are discussed below.

3.1.1. Case 1: For very small values of H

When H is very small the critical value of the Rayleigh
number RaSt

T is slightly above the critical value for the local
thermal equilibrium case. Accordingly we expand RaSt

T given
by Eq. (3.13) in a power series in H as

RaSt
T = 1

a2

[
(π2 + a2)2 + a2 Le RaS

]

×
{

1 + H

(π2 + a2)
− γH 2

(π2 + a2)2
+ · · ·

}
(3.18)

To minimize RaSt
T up to O(H 2) we set ∂RaSt

T /∂a = 0 and obtain
an expression of the form

(a4 − π4) −
[
π2 + a4 Le RaS

(π2 + a2)2

]
H + γ

[
1 + 2a4 Le RaS

(π2 + a2)3

]
H 2

+ · · · = 0 (3.19)

We also expand a in power series of H as

a = a0 + a1H + a2H
2 + · · · (3.20)

where a0 = π is critical wavenumber for the local thermal
equilibrium case. Substituting Eq. (3.20) into Eq. (3.19), then
equating the coefficients of the same powers of H we obtain
the values of a1 and a2, so that

ac = π + H

[
1

4π
+ Le RaS

16π3

]
− H 2

512π7

[
(4π2 + Le RaS)

×{
4π2(8γ + 3) − Le RaS

}] + · · · (3.21)

Using this in Eq. (3.18) one can obtain the critical Rayleigh
number for small H .

3.1.2. Case 2: For very large values of H

For large values of H , expression for the stationary Rayleigh
number takes the form

RaSt
T = 1

a2

[
(π2 + a2)2 + a2 Le RaS

](1 + γ

γ

)

×
{

1 − (π2 + a2)

γ (1 + γ )
H−1 + (π2 + a2)2

γ 2(1 + γ )
H−2 + · · ·

}

(3.22)

We minimize this with respect to a in a similar way as we did
in the small H case(

1 + γ

γ

)
(a4 − π4) − 1

γ 2

[
(π2 + a2)(2a2 − π2)

+ a4 Le RaS

(π2 + a2)

]
H−1 + 1

γ 3

[
(π2 + a2)2(3a2 − π2)

+ 2a4 Le RaS

]
H−2 + · · · = 0 (3.23)

Similarly we expand a in the form

a = π + a1

H
+ a2

H 2
+ · · · (3.24)

Substituting Eq. (3.24) into Eq. (3.23) and equating the co-
efficients of like powers of H−1 we find a1 and a2 in the form

a1 = 1

γ (1 + γ )

[
π3 + π Le RaS

4

]

a2 = 1

32γ 2(1 + γ )2

[
16π5(1 − 8γ )

+ π Le RaS

{
8π2(3 − 4γ ) + 5 Le RaS

}]
Again with these values of a1 and a2, we compute the critical
wavenumber ac using Eq. (3.24) and finally using this value
of ac , one can obtain the critical Rayleigh number RaSt

T for
stationary convection from Eq. (3.22) for large H . Detailed
quantitative comparison of the exact values of stationary critical
wavenumber and Rayleigh number computed from Eqs. (3.13)
and (3.17) has been made with their asymptotic values for the
small and large values of H for different values of γ and RaS in
Tables 1 and 2. It is important to note that there is an excellent
agreement between these two values.

3.2. Oscillatory convection

For oscillatory onset Δ2 = 0 (ωi �= 0) and this gives a dis-
persion relation of the form (on dropping the subscript i)

A(ω2)2 + B(ω2) + C = 0 (3.25)
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Table 1
Comparison of the exact and asymptotic values of critical wavenumber and the
critical Rayleigh number for small values of H for the stationary convection
(Le = 2)

RaS γ log10 H aSt
c (E) aSt

c (A) RaSt
Tc

(E) RaSt
Tc

(A)

10 0.01 −5 3.14159 3.14159 59.4784 59.4784
−4 3.14160 3.14160 59.4787 59.4787
−3 3.14171 3.14171 59.4814 59.4814
−2 3.14279 3.14279 59.5085 59.5085
−1 3.15354 3.15354 59.7792 59.7792

0 3.25774 3.25774 62.4355 62.4355
1 4.06442 4.06438 85.6198 85.9195

1.0 −5 3.14159 3.14159 59.4784 59.4784
−4 3.14160 3.14160 59.4787 59.4787
−3 3.14171 3.14171 59.4814 59.4814
−2 3.14279 3.14279 59.5085 59.5085
−1 3.15342 3.15342 59.7777 59.7777

0 3.24731 3.24652 62.3012 62.2945
1 3.61046 3.12330 78.5567 74.3443

100 0.01 −5 3.14160 3.14160 239.479 239.479
−4 3.14164 3.14164 239.480 239.480
−3 3.14208 3.14208 239.491 239.491
−2 3.14642 3.14642 239.600 239.600
−1 3.18997 3.18997 240.682 240.682

0 3.62351 3.62351 250.731 250.731
1 6.17243 6.17240 314.566 314.566

1.0 −5 3.14160 3.14160 239.479 239.479
−4 3.14164 3.14164 239.480 239.480
−3 3.14208 3.14208 239.491 239.491
−2 3.14642 3.14642 239.600 239.600
−1 3.18950 3.18949 240.676 240.676

0 3.58416 3.58146 250.295 250.275
1 5.36582 2.10409 303.683 297.918

E indicates exact and A, asymptotic.

Table 2
Comparison of the exact and asymptotic values of critical wavenumber and
the critical Rayleigh number for large values of H for stationary convection
(Le = 2)

RaS γ log10 H aSt
c (E) aSt

c (A) RaSt
Tc

(E) RaSt
Tc

(A)

10 0.01 5 3.18864 3.18858 5891.35 5891.40
7 3.14206 3.14206 6006.15 6006.15
9 3.14160 3.1416 6007.31 6007.31

11 3.14159 3.14159 6007.32 6007.32
13 3.14159 3.14159 6007.32 6007.32

1.0 3 3.16469 3.16466 117.801 117.802
5 3.14183 3.14183 118.945 118.945
7 3.14159 3.14159 118.957 118.957
9 3.14159 3.14159 118.957 118.957

50 0.01 5 3.35625 3.35591 23708.8 23709.0

7 3.14346 3.14346 24182.6 24182.6
9 3.14161 3.14161 24187.3 24187.3

11 3.14159 3.14159 24187.3 24187.3
13 3.14159 3.14159 24187.3 24187.3

1.0 3 3.24011 3.23997 474.251 474.253
5 3.14253 3.14253 478.910 478.910
7 3.14160 3.14160 478.956 478.956
9 3.14159 3.14159 478.957 478.957

11 3.14159 3.14159 478.957 478.957

E indicates exact and A, asymptotic.

where

A = α2 Le2(δ2 + H + Va
)

B = δ6(α2 + Le2) + δ4{(H + Va)(α2 + Le2) + 2 Le2 γH
}

+ δ2 Le2 γH
{
2Va + H(1 + γ )

}
+ a2α2 Le RaS Va

{
δ2(1 − Le) + LeH

}
+ γH 2 Le2 Va(α + γ )

C = δ4[δ6 + δ4{Va + H(1 + 2γ )
} + δ2{2 Va + H(1 + γ )

}
+ γH 2 Va(α + γ )

] + a2 Le RaS Va
[
δ4(1 − Le)

+ δ2H
{
2γ (1 − Le) − Le

} + γH 2{(α − Le)

+ γ (1 − Le)
}]

Now Eq. (3.5) with Δ2 = 0, gives

RaOsc
T = A0(A1 + A2) (3.26)

with the values of A0, A1 and A2 given by Eqs. (3.8)–(3.10).
For the oscillatory convection to occur ω2 must be positive.
Since Eq. (3.25) is a quadratic in � 2, it can give rise to more
than one positive root, for fixed values of the governing para-
meters. This has important implications for the linear stability
of double-diffusive porous layer. Thus in case this equation has
two real positive roots then there exist two oscillatory neutral
solutions. From Descartes’ rule of signs in order for (3.25) to
have two positive real roots, it is necessary that B < 0 and
C > 0. We find the oscillatory neutral solutions from Eq. (3.26).
It proceeds as follows: First determine the number of posi-
tive solutions of Eq. (3.25). If there are none, then no oscil-
latory instability is possible. If there are two, then the minimum
(over a2) of Eq. (3.26) with ω2 given by Eq. (3.25) gives the os-
cillatory neutral Rayleigh number RaOsc

T ,c corresponding to the
critical wavenumber ac and the critical frequency of the os-
cillation ω2

c . The analytical expression for oscillatory Rayleigh
number given by Eq. (3.26) is evaluated at a = ac and ω2 = ω2

c

for various values of the physical parameters in order to know
their effects on the onset of oscillatory convection.

4. Finite amplitude steady convection

In this section we consider the nonlinear analysis using a
truncated representation of Fourier series considering only two
terms. Although the linear stability analysis is sufficient for ob-
taining the stability condition of the motionless solution and
the corresponding eigenfunctions describing qualitatively the
convective flow, it cannot provide information about the val-
ues of the convection amplitudes, nor regarding the rate of heat
transfer. To obtain this additional information, we perform the
nonlinear analysis, which is useful to understand the physi-
cal mechanism with minimum amount of mathematical analy-
sis and is a step forward towards understanding full nonlinear
problem. There is a large body of literature available on the fi-
nite amplitude thermal convection in porous medium with local
thermal equilibrium condition for both single and two com-
ponent systems (see e.g. [3,38,40–42] and [45]). The method
proposed by these authors has been adopted here in this paper
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to study the effect of local thermal non-equilibrium on double
diffusive convection in a porous layer.

A minimal double Fourier series which describes the finite
amplitude steady-state convection is given by

ψ = A sin(ax) sin(πz) (4.1)

Tf = B1 cos(ax) sin(πz) + B2 sin(2πz) (4.2)

Ts = B3 cos(ax) sin(πz) + B4 sin(2πz) (4.3)

S = B5 cos(ax) sin(πz) + B6 sin(2πz) (4.4)

where the steady-state amplitudes A, Bi ’s are constants and are
to be determined from the dynamics of the system. Substituting
Eqs. (4.1)–(4.4) into the steady part of coupled nonlinear sys-
tem of partial differential equations (2.19)–(2.22) and equating
the coefficients of like terms we obtain the following nonlinear
system equations

(π2 + a2)A + a RaT B1 − a RaS B5 = 0 (4.5)

aA + [
(π2 + a2) + H

]
B1 − HB3 + πaAB2 = 0 (4.6)

2[4π2 + H ]B2 − 2HB4 − πaAB1 = 0 (4.7)

γHB1 − [
(π2 + a2) + γH

]
B3 = 0 (4.8)

γHB2 − [4π2 + γH ]B4 = 0 (4.9)

aA + 1

Le
(π2 + a2)B5 + πaAB6 = 0 (4.10)

8π2

Le
B6 − πaAB5 = 0 (4.11)

The steady state solutions are useful because they predict that
a finite amplitude solution to the system is possible for sub-
critical values of the Rayleigh number and that the minimum
values of RaT for which a steady solution is possible lies below
the critical values for instability to either a marginal state or an
overstable infinitesimal perturbation. Elimination of all ampli-
tudes, except A, yields

A

{
(π2 + a2) − a2 RaT

[
(π2 + a2){π2 + a2 + H(1 + γ )}

(π2 + a2 + γH)

+ a2(4π2 + γH)

4π2 + H(1 + γ )

(
A2

8

)]−1

+ a2 RaS

[
(π2 + a2)

Le
+ a2 Le

(
A2

8

)]−1}
= 0 (4.12)

The solution A = 0 corresponds to pure conduction, which we
know to be a possible solution though it is unstable when RaT

is sufficiently large. The remaining solutions are given by

A2

8
= 1

2x1

[−x2 +
√

x2
2 − 4x1x3

]
(4.13)

where

x1 = a4δ2 Le(4π2 + γH)

4π2 + H(γ + 1)

x2 = a2δ4 Le[δ2 + H(γ + 1)]
δ2 + γH

+ a2δ4(4π2 + γH)

Le[4π2 + H(γ + 1)]
+ a4 RaS(4π2 + γH)

2
− a4 Le RaT
[4π + H(γ + 1)]
x3 =
(

δ6

Le
+ a2δ2 RaS

)(
δ2 + H(γ + 1)

δ2 + γH

)
− a2δ2

Le
RaT

When we let the radical in the above equation to vanish, we ob-
tain an expression for finite amplitude Rayleigh number RaF

T ,
which characterizes the onset of finite amplitude steady mo-
tions. The finite amplitude Rayleigh number can be obtained in
the form

RaF
T = 1

2y1

[−y2 +
√

y2
2 − 4y1y3

]
(4.14)

where

y1 = a4 Le2(δ2 + γH)
[
4π2 + H(γ + 1)

]
y2 = −2a2[a2 Le RaS(δ2 + γH)(4π2 + γH)

+ δ4{H 2[Le(γ + 1) + Le
][

Le(γ + 1) − γ
]

+ 4π2δ2(Le2 − 1) + H(δ2 + 4π2)
[
Le2(γ + 1) − γ

]}]

y3 = 1

Le2(δ2 + γH)[4π2 + H(γ + 1)]
[
a2 Le RaS(4π2 + γH)

× (δ2 + γH) − δ4{H 2[Le(γ + 1) + Le
][

Le(γ + 1) − γ
]

+ 4π2δ2(Le2 − 1) − H(δ2 + 4π2)
[
Le2(γ + 1) − γ

]}]2

5. Heat and mass transports

Once we know the amplitude we can find the heat and mass
transfer. In the study of convection in porous medium, the quan-
tification of heat and mass transports is important. This is be-
cause onset of convection, as Rayleigh number is increased, is
more readily detected by its effect on the heat transport. In the
basic state, heat and mass transport is by conduction alone.

If H̄ and J̄ are the rate of heat transport per unit area for the
fluid phase and mass transport per unit area respectively, then

H̄ = −κf

〈
∂Tf total

∂z

〉
z=0

(5.1)

J̄ = −D

〈
∂Stotal

∂z

〉
z=0

(5.2)

where the angular bracket corresponds to a horizontal average
and

Tf total = Tl − �T
z

d
+ Tf (x, z) (5.3)

Stotal = Sl − �S
z

d
+ S(x, z) (5.4)

Substituting Eqs. (4.2) and (4.4) into Eqs. (5.3) and (5.4) and
using the resultant equations in Eqs. (5.1) and (5.2), we get

H̄ = κf �T

d
(1 − 2πB2) (5.5)

J̄ = D�S

d
(1 − 2πB6) (5.6)

The Nusselt number for the fluid phase and Sherwood number
are defined by
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Nu = H̄

κf �T/d
= 1 − 2πB2 (5.7)

Sh = J̄

D�S/d
= 1 − 2πB6 (5.8)

Writing B2 and B6 in terms of A, using Eqs. (4.5)–(4.11) and
substituting into Eqs. (5.7) and (5.8), we obtain

Nu = 1 + 2a2(A2/8)
[
(δ2 + γH)(4π2 + γH)

/
{
δ2[δ2 + H(γ + 1)

][
4π2 + H(1 + γ )

]
+ a2(δ2 + γH

)
(4π2 + γH)(A2/8)

}]
(5.9)

Sh = 1 + 2a2(A2/8)

[
Le2

δ2 + a2 Le2(A2/8)

]
(5.10)

The second term on the right-hand side of Eqs. (5.9) and (5.10)
represent the convective contribution to heat and mass transport
respectively. It is obvious that Nu = Sh = 1 for all RaT � RaSt

T ,c ,
indicating that the convection heat and mass transfer branches
off from the conductive heat transfer line at the critical value
of the thermal Rayleigh number. It is important to note that our
finite amplitude analysis is valid for thermal Rayleigh number
around the convection threshold. Therefore the Nusselt number
and the Sherwood number in the present study are limited by an
upper bound value of 3. Better results can only be obtained by
including more number of terms in the Fourier series represen-
tation, which allows the variation of wave number as the value
of thermal Rayleigh number varies.

Now we intend to obtain the quantification of heat and mass
transports for the limiting cases H → 0 and H → ∞.

When H → 0, Eq. (5.9) yields

Nu = 1 + 2a2(A2/8)

[
1

a2 + δ2(A2/8)

]
(5.11)

while Eq. (5.10) remains unchanged, with (A2/8) given by
Eq. (4.13) where

x1 = a4δ2 Le

x2 = a2

Le

[
δ4(1 + Le2) + a2 Leγ (RaS − RaT Le)

]

x3 = δ2

Le

[
δ4 + a2(Le RaS − RaT )

]
.

Further, when H → ∞, Eqs. (5.9) reads

Nu = 1 + 2a2(A2/8)

[
1

a2 + δ2(1 + 1/γ )2(A2/8)

]
(5.12)

and Eq. (5.10) remains invariant, with (A2/8) given by
Eq. (4.13) where

x1 =
(

γ

γ + 1

)
a4δ2 Le

x2 = a2

Leγ (γ + 1)

[
δ4{γ 2 + Le2(γ + 1)2}

+ a2 Leγ
{
γ RaS − RaT Le(γ + 1)

}]

x3 = δ2 [
δ4(γ + 1) + a2{Le RaS(γ + 1) − γ RaT

}]

γ Le
Detailed quantitative comparison of the exact values of Nusselt
number and Sherwood number computed from the above equa-
tions for the cases of H → 0 and H → ∞ has been made with

Table 3
Comparison of the exact and asymptotic values of Nusselt and Sherwood
number for small values of H for different values of RaS and γ (Le = 2,
RaT = 2 × RaSt

Tc
)

RaS γ log10 H Nu(E) Nu(A) Sh(E) Sh(A)

10 0.01 −4 2.29606 2.29606 2.76090 2.76090
−3 2.29609 2.29606 2.76091 2.76091
−2 2.29644 2.29609 2.76107 2.76107
−1 2.29988 2.29634 2.76266 2.76261

0 2.33111 2.29847 2.77679 2.77683
1 2.48920 2.29841 2.84204 2.85480

1.0 −4 2.29606 2.29606 2.76090 2.76090
−3 2.29609 2.29606 2.76091 2.76091
−2 2.29644 2.29609 2.76107 2.76107
−1 2.29986 2.29634 2.76265 2.76261

0 2.32971 2.29835 2.77616 2.77626
1 2.46644 2.25957 2.83324 2.83251

50 0.01 −4 2.68494 2.68494 2.91068 2.91068
−3 2.68496 2.68494 2.91069 2.91069
−2 2.68512 2.68496 2.91074 2.91075
−1 2.68670 2.68518 2.91125 2.91140

0 2.69912 2.68571 2.91521 2.91673
1 2.71565 2.64324 2.92043 2.93405

1.0 −4 2.68494 2.68494 2.91068 2.91068
−3 2.68496 2.68494 2.91069 2.91069
−2 2.68512 2.68496 2.91074 2.91075
−1 2.68669 2.68518 2.91124 2.91140

0 2.69881 2.68588 2.91511 2.91660
1 2.73525 2.67266 2.92652 2.94121

E indicates exact and A, asymptotic.

Table 4
Comparison of the exact and asymptotic values of Nusselt and Sherwood
number for large values of H for different values of RaS and γ (Le = 2,
RaT = 2 × RaSt

Tc
)

RS γ log10 H Nu(E) Nu(A) Sh(E) Sh(A)

10 0.01 4 2.17399 2.34023 2.99997 2.99997
6 2.33495 2.33625 2.99998 2.99998
8 2.33624 2.33625 2.99998 2.99998

10 2.33625 2.33625 2.99998 2.99998
12 2.33625 2.33625 2.99998 2.99998

1.0 4 2.32522 2.32587 2.93832 2.93823
6 2.32589 2.32590 2.93841 2.93840
8 2.32590 2.32590 2.93841 2.93841

10 2.32590 2.32590 2.93841 2.93841
12 2.32590 2.32590 2.93841 2.93841

50 0.01 5 2.71094 2.71669 2.99999 2.99999
6 2.71640 2.71695 2.99999 2.99999
7 2.71690 2.71695 2.99999 2.99999
8 2.71695 2.71695 2.99999 2.99999
9 2.71695 2.71695 2.99999 2.99999

1.0 5 2.70637 2.70913 2.97872 2.97834
6 2.70912 2.70940 2.97895 2.97891
7 2.70939 2.70942 2.97897 2.97897
8 2.70942 2.70942 2.97897 2.97897
9 2.70942 2.70942 2.97897 2.97897

E indicates exact and A, asymptotic.
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their asymptotic values computed from Eqs. (5.9) and (5.10) by
substituting the critical values of thermal Rayleigh number and
wavenumber for the small and large values of H respectively
for different values of γ and RaS , in Tables 3 and 4. It is impor-
tant to note that there is an excellent agreement between these
two values.

6. Results and discussion

An analytical study of linear and nonlinear double diffusive
convection in a horizontal fluid-saturated porous layer is carried
out by considering a thermal non-equilibrium model. The onset
criterion for both marginal and oscillatory convection is derived
in the linear theory. In the realm of nonlinear theory the finite
amplitude steady convection is discussed. The expression for
finite amplitude Rayleigh number is derived analytically. The
effect of both solute diffusion and thermal non-equilibrium on
the stability of the system is investigated. It is found that in most
of the situations the instability sets in via finite amplitude mo-
tions, prior to the marginal or oscillatory convection. However,
for large values of solute Rayleigh number and Lewis number
the finite amplitude motions become weaker and the onset of
double diffusive convection ceases to be in the form of finite
amplitude convection and the instability sets in via oscillatory
mode. Further the measure of heat and mass transport across
the layer is determined by evaluating the Nusselt number and
the Sherwood number for the case of steady convection.

The neutral stability curves in RaT –a plane for various pa-
rameter values are shown through Figs. 1–6. From these figures
it is clear that the neutral curves are connected in a topologi-
cal sense. This connectedness allows the linear stability criteria
to be expressed in terms of the critical Rayleigh number, below
which the system is stable and unstable above. The points where
the overstable solutions branch off from the stationary convec-
tion can be easily identified from these figures. We also observe
that for smaller values of the wavenumber each curve is a mar-
gin of the oscillatory instability and at some fixed wavenumber

Fig. 1. Neutral stability curves for different values of inter-phase heat transfer
coefficient H .
depending on the other parameters the overstability disappears
and the curve forms the margin of stationary convection.

The effect of inter-phase heat transfer coefficient H on the
neutral stability curves is shown in Fig. 1 for the fixed values
of solute Rayleigh number, porosity modified conductivity ra-
tio, Lewis number, Vadasz number and ratio of diffusivities. It
follows from this figure that for the set of values chosen for the
parameters, the onset of convection is through oscillatory state.
Further, we observe that the minimum of Rayleigh number for
oscillatory mode increases with H , indicating that the effect of
inter-phase heat transfer coefficient is to stabilize the system.

In Fig. 2 the effect of solute Rayleigh number RaS on the
marginal stability curves for the fixed values of other govern-
ing parameters is depicted. We observe that for small values
of RaS the convection sets in first as stationary mode. It is
interesting to note that there is a critical value RaS = Ra∗

S

Fig. 2. Neutral stability curves for different values of solute Rayleigh number
RaS .

Fig. 3. Neutral stability curves for different values of porosity modified conduc-
tivity ratio γ .
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Fig. 4. Neutral stability curves for different values Lewis number Le.

Fig. 5. Neutral stability curves for different values of Vadasz number Va.

Fig. 6. Neutral stability curves for different values of ratio of diffusivities α.

(e.g., Ra∗
S = 19.579 for the fixed values of H = 100, γ = 0.5,

Va = 10 and α = 0.25) such that for RaS < Ra∗
S the instabil-

ity manifests as stationary convection and for RaS � Ra∗
S , the

onset of instability manifests as oscillatory convection. There-
fore, the effect of solute Rayleigh number is to allow the onset
of oscillatory convection instead of stationary convection. It is
also observed from this figure that the minimum of Rayleigh
number for stationary state increases with the solute Rayleigh
number. However, in the case oscillatory states it is interesting
to note that for moderate values of RaS , RaT ,c increases with
RaS but reverses the trend for fairly higher values of RaS .

Fig. 3 indicates the effect of porosity modified conductiv-
ity ratio γ on the marginal stability curves. We observe that
with the increase in the value of γ the minimum of oscillatory
Rayleigh number decreases. The effect of γ therefore, is to ad-
vance the onset of oscillatory convection. It is interesting to note
that the bifurcation from oscillatory to stationary mode occurs
at same value of the wavenumber for all values of γ . The effect
of Lewis number on the neutral curves is unveiled in Fig. 4. It
is found that the minimum of oscillatory Rayleigh number de-
creases with Le, indicating that the effect of Lewis number is
to destabilize the system. Further, with the increasing Le, the
point where the overstable solutions bifurcate into the station-
ary motions are shifted towards the higher value, this suggests
that the Le blows up the region of oscillatory convection. The
similar effect is observed with solute Rayleigh number.

The variation of marginal curves for different values of
Vadasz number, Va, with all other parameters kept fixed, is
depicted in Fig. 5. It is important to note that there is a crit-
ical value Va = Va∗ (e.g., Va∗ = 0.7739 for the fixed values
of H = 100, γ = 0.5,RaS = 100 and α = 0.25) such that
for Va < Va∗ the instability manifests as stationary convection
and for Va � Va∗, the onset of instability manifests as oscilla-
tory convection. It is clear that the critical value of oscillatory
Rayleigh number decreases with the increase in Vadasz num-
ber, indicating that, the Vadasz number augments the onset of
oscillatory convection. It is also important to note that similar
to the RS and Le, the Vadasz number enlarges the region os-
cillatory convection. In Fig. 6 we display the effect of ratio of
diffusivities, α on the neutral stability curves. In this case also
the effect similar to that of γ , Le, and Va is observed. That is,
for the set of values chosen for the parameters, the diffusivity
ratio enhances the onset of double diffusive convection in the
oscillatory region.

The behavior of the critical values of Rayleigh number for
stationary, oscillatory and finite amplitude convection and also
the wavenumber and frequency of the oscillatory mode is de-
picted through Figs. 7–9, as the functions of inter-phase heat
transfer coefficient H . In general, it is observed that for very
small and large values of H the stability criterion is found to
be independent of H . However, the effect of H on the stability
of the system is significant only for intermediate values of H .
The physical reason for this is that when H → 0 there is almost
no transfer of heat between the fluid and solid phases and the
properties of solid phase have no significant influence on the
onset criterion. When H → ∞ the fluid and solid phase have
almost equal temperatures and therefore may be treated a sin-
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Fig. 7. Variation of critical Rayleigh number RaT ,cwith H for different values of (a) RaS (b) γ , (c) Le and (d) α.
gle phase. Between these two extremes H gives rise to a strong
non-equilibrium effect.

The variation of critical Rayleigh number with inter-phase
heat transfer coefficient H for different parameter values is
shown in Figs. 7(a)–(d). These figures indicate that the criti-
cal Rayleigh number increases from the LTE value when H is
small to a LTNE value when H is large. Thus, the inter-phase
heat transfer coefficient makes the system more stable for its
intermediate values. Fig. 7(a) indicates the effect of RaS on the
critical Rayleigh number. For small values of solute Rayleigh
number (RaS � 10) the stationary onset occurs. As the value
of RaS is increased further the finite amplitude motions be-
come significant and therefore the convection occurs through
the finite amplitude motions. For small and moderate values
of H , the fairly large RaS (�100) dampens the finite amplitude
motions and the overstable mode becomes the most dangerous
mode in such case. However for large H (>100) once again the
instability sets in through finite amplitude motions. The critical
Rayleigh number for both stationary and finite amplitude con-
vection is found to increase with the solute Rayleigh number,
indicating that the presence of additional diffusing component
stabilizes the system towards the marginal and finite amplitude
convection. A similar stabilizing effect of RaS is observed in
the oscillatory mode only for small and moderate values of H ,
however a reverse trend is reported for large values of H .

The variation of oscillatory critical Rayleigh number with H

for different values of porosity modified conductivity ratio γ is
depicted in Fig. 7(b). We observe from this figure that for very
small values of H , RaT ,c is independent of γ and is close to
that of the LTE case, since for very small values of H , there is
no significant transfer of heat between the phases and the on-
set criterion is not affected by the properties of the solid phase.
On the other hand, for large values of H , though the stabil-
ity criterion is independent of H , the condition for the onset of
convection is based on the mean properties of the medium and
therefore, the critical Rayleigh number is function of γ . It is ob-
served that for small γ (�0.01) the instability sets in via finite
amplitude motions when H is small, whereas for large values
of H the oscillatory onset occurs. For higher values of γ the
onset of double diffusive convection is merely through over-
stable mode. This figure also indicates that for moderate and
large values of H , critical Rayleigh number for each of sta-
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Fig. 8. Variation of critical wavenumber ac with H for different values of (a) RaS , (b) γ , (c) Le and (d) α.
tionary, oscillatory and finite amplitude convection decreases
with the increasing values of γ . Therefore the effect of porosity
modified conductivity ratio is to reduce the stabilizing effect of
inter-phase heat transfer coefficient. It is important to note that
for sufficiently large values of γ , the critical Rayleigh number
becomes independent of H .

Fig. 7(c) displays the variation of critical Rayleigh number
with H for different values of Lewis number. We observe that
for small values of Le (�1) the oscillatory motions are impos-
sible and the stationary onset occurs when H is small while the
finite amplitude convection occurs for large H . However, for
large values of Le the oscillatory convection is possible prior to
both stationary and finite amplitude motion. This figure also re-
veals that with the increasing values of Le, the critical Rayleigh
number for stationary mode increases while that for oscillatory
and finite amplitude convection decrease. Therefore, the Lewis
number enhances the stability of the double diffusive system in
stationary mode while support the oscillatory and finite ampli-
tude convection.

In Fig. 7(d) the variation of RaT ,c with H for different val-
ues of diffusivity ratio α is indicated. We observe that for small
values of α the onset of convection is through finite ampli-
tude motions whereas for α � 0.3 the oscillatory onset occurs
when H is small and for large H once again the finite amplitude
motions become significant. It is also observed that the onset of
stationary and finite amplitude convection is independent of α.
This figure indicates that for moderate and large values of H the
oscillatory critical Rayleigh number increases with increasing
α while a reverse effect is observed for small values of H . As
α increases, the contribution of heat conduction from the solid
phase becomes negligible, and therefore the critical Rayleigh
number for oscillatory mode increases towards a constant value.
The diffusivity ratio therefore reinforces the stabilizing effect
of inter-phase heat transfer coefficient in case of the overstable
mode.

The variation of critical wavenumber with inter-phase heat
transfer coefficient H is shown in Figs. 8(a)–(d) for differ-
ent parameter values. We observe from these figures that the
oscillatory critical wavenumber decreases monotonically from
the LTE value when H is small to a LTNE value when H is
large, while the critical wavenumber for stationary and finite
amplitude mode increases with H to its maximum value and
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Fig. 9. Variation of critical frequency ω2
c with H for different values of (a) RaS , (b) γ , (c) Le and (d) α.
then decreases back with further increase in H . The effect of
solute Rayleigh number on critical wavenumber is displayed
in Fig. 8(a). This figure indicates that the critical wavenumber
increases with the increasing RaS in both stationary and over-
stable modes, whereas the effect of RaS on critical wavenumber
for finite amplitude mode is not significant. We found that the
critical wavenumber for the stationary mode approaches to that
of LTE case when H → 0 and H → ∞. This is quite obvi-
ous as the corresponding physical problems are equivalent. As
H → 0, the solid phase ceases to affect the thermal field of the
fluid, which is free to act independently, while as H → ∞ the
solid phase and fluid phase have identical temperatures and may
be treated as a single phase. At intermediate values of H we ob-
serve that the critical wavenumber for stationary mode attains a
maximum value and returns back to the LTE value. However,
the oscillatory critical wavenumber decreases monotonically
with H for intermediate values of H .

Fig. 8(b) indicates the variation of critical wavenumber for
the oscillatory mode with H for different values of γ . As stated
earlier for very small values of H the solid phase does not affect
the onset criterion, and therefore the critical wavenumber ac
becomes independent of γ for small H . On the other hand for
large values of H , the critical wavenumber ac is a function of γ ,
since the stability criterion depends on the mean properties of
the medium. We observe from this figure that for intermediate
values of H the critical wavenumber for each of the stationary,
oscillatory and finite amplitude modes decreases with increas-
ing γ .

In Fig. 8(c) we display the effect of Lewis number on
the critical wavenumber. This figure indicates that the criti-
cal wavenumber for both stationary and oscillatory modes in-
creases with increase in Le while that for the finite amplitude
motions decreases with Le. Further the effect of Le on finite am-
plitude critical wavenumber becomes less significant for large
values of Le. The variation of critical wavenumber with H for
different values of diffusivity ratio is shown in Fig. 8(d). From
this figure it is found that the oscillatory critical wavenumber
increases with the increasing values of α. However, the criti-
cal wavenumber for stationary and finite amplitude motions is
independent of diffusivity ratio.

The variation of critical frequency ω2
c for the oscillatory

mode with H for different parameter values is shown through
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Figs. 9(a)–(d). It is clear from these figures that the critical fre-
quency increases from a constant value, when H is very small
to its maximum value and then with the further increase in H , it
decreases back to another constant value, when H is large. The
effect of RaS on the critical frequency is displayed in Fig. 9(a).
It is found that the critical frequency increases with increase
in the value of RaS . A similar effect on ω2

c has been observed
in Fig. 9(c) with the Lewis number. In Fig. 9(b) the effect of
porosity modified conductivity ratio γ on the critical frequency
is displayed. Since for small H the solid phase ceases to affect
the onset criteria we observe from these figures that ω2

c remains
independent of γ for very small H . Also since in the very large
H limit the stability criterion depends on the mean properties of
medium, ω2

c depends on γ . It is observed from this figure that
the critical frequency of oscillations decreases with increase in
the value of γ . The effect of diffusivity ratio α on the critical
frequency is revealed in Fig. 9(d). The effect similar to that of
RaS and Le is observed for small values of H , while a reverse
effect is observed for large values of H .

The variation of critical Rayleigh number, wavenumber and
frequency of oscillations with H for different values of Vadasz
number is unveiled in Figs. 10(a)–(c). From Fig. 10(a) it is
reported that for small values of Va the double diffusive con-
vection sets in through the finite amplitude motions. The oscil-
latory onset occurs for the large values of Va when H is small,
however the finite amplitude motions overcome the oscillatory
mode for moderate and large values of H . Therefore, the in-
stability once again sets in through the finite amplitude mode.
The critical Rayleigh number for oscillatory mode decreases
with increase in Va whereas stationary and finite amplitude crit-
ical Rayleigh number remain independent of Va. The effect of
Vadasz number is therefore, to advance the onset of double dif-
fusive convection, in oscillatory mode.

In Fig. 10(b) we display the effect of Vadasz number on the
oscillatory critical wavenumber. This figure indicates that the
critical wavenumber aOsc

c for oscillatory mode increases with
Va. However, the there is no significant effect of Va on the sta-
tionary and finite amplitude critical wavenumber. The effect
of Va on the critical frequency of oscillations is depicted in
Fig. 10(c). The effect similar to that of RaS and Le is observed
from this figure. That is the effect of Va is to increase the critical
frequency.

In the study of double diffusive convection the determination
of heat and mass transport across the layer plays a vital role.
Here, the onset of convection as the thermal Rayleigh number
is increased is more rapidly detected by its effect on the heat and
mass transfer. The quantity of heat and mass transfer across the
layer is given by Nu and Sh respectively, which represent the
ratio of heat or mass transported across the layer to the heat and
mass transported by conduction alone. In Figs. 11(a)–(d) we ex-
hibit the variation of the Nusselt number of the fluid phase and
the Sherwood number with thermal Rayleigh number for dif-
ferent values of RaS , H , Le and γ . From each of these figures
it is clear that as Darcy–Rayleigh number increases from one
to three times of its critical value, the heat and mass transfer
increase sharply and as the thermal Rayleigh number is in-
creased further, they remain almost constant. It is also found
Fig. 10. Variation of critical values of (a) Rayleigh number (b) wavenumber and
(c) frequency with H for different values of Vadasz number.

that in most of the cases the Sherwood number is above the
Nusselt number. We also note that the effect of each of RaS ,
H , γ and Le is to increase the values of Nu and Sh. Therefore
the effect of each of these parameters is to enhance the heat
and mass transport across the layer. Although the presence of
a stabilizing gradient of solute will inhibit the onset of convec-
tion, due to the strong finite amplitude motions, which exist for
large Rayleigh numbers, tend to mix the solute and redistrib-
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Fig. 11. Variation of Nusselt/Sherwood number with Rayleigh number RaT for different values of (a) RaS , (b) H , (c) Le and (d) γ .
ute it so that the interior layers are more neutrally stratified. As
a consequence of that the inhibiting effect of solute gradient
is greatly reduced and hence fluid will convect more and more
heat and mass when there is an increase in the value RaS , H , γ

and Le.

7. Conclusions

The linear and nonlinear double diffusive convection in a
horizontal fluid-saturated porous layer is investigated analyti-
cally when the fluid and solid phases are not in local thermal
equilibrium. In case of linear theory the thresholds of both sta-
tionary and oscillatory convection are derived as the functions
of solute Rayleigh number, inter-phase heat transfer coefficient,
Lewis number, porosity modified conductivity ratio, Vadasz
number and diffusivity ratio. The nonlinear theory predicts the
occurrence of finite amplitude motions. We found that there
is competition between the processes of thermal and solute
diffusion that causes the convective instability to set in as os-
cillatory and finite amplitude mode rather than stationary. It
is found that for both large and small inter-phase heat trans-
fer coefficient the system behaves like a LTE model while the
intermediate values have strong influence on each of station-
ary, oscillatory and finite amplitude modes. The presence of a
stabilizing gradient of solute will inhibit the onset of double dif-
fusive convection. The effect of porosity modified conductivity
ratio, Vadasz number is to enhance the instability of system.
The Lewis number stabilizes the system towards the station-
ary mode while destabilizes the oscillatory and finite amplitude
modes. The diffusivity ratio strengthens the stabilizing effect of
inter-phase heat transfer coefficient. For very small values of
H , the critical values are independent of the porosity modified
conductivity ratio γ as there is almost no transfer of heat be-
tween the fluid and solid phases. Finite amplitude results are
used to evaluate the convective heat and mass flux. The strong
finite amplitude motions, tend to mix the solute and redistrib-
ute it so that the interior layers are more neutrally stratified. As
a consequence of that the inhibiting effect of solute gradient
is greatly reduced and hence fluid will convect more and more
heat and mass when there is an increase in the value RaS , H , γ

and Le.
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